

Suitable

An Ansible API for humans.

Introduction

Ansible is a configuration management tool written in Python. Even though it
is written in Python its configuration syntax is decidedly un-pythonic.

To write ansible configuration is to write YAML files. Suitable does not
try to change that. Suitable tries to be a simple Ansible API abstraction
in Python.

With Suitable you can write Python code that has easy access to the
plethora of modules that Ansible offers. As such it is great for
scripts that automate migrations, upgrades or other little tasks.

Suitable is not an alternative to Ansible, it is a tool to complement
it. Do not use Suitable to manage your server fleet. Use Suitable
to boss your servers around from time to time.

Warning

Suitable is not endorsed by Ansible and it is not affilated with it. Use at
your own peril.

The official way to use Ansible from Python is documented here:
http://docs.ansible.com/ansible/developing_api.html

Installation

To install suitable, simply use pip. This will install Ansible 2.x
automatically as a dependency:

pip install suitable

Examples

Create the user ‘denis’ on ‘web.seantis.dev’ and ‘db.seantis.dev’:

from suitable import Api

hosts = Api(['web.seantis.dev', 'db.seantis.dev'])
hosts.user(name='denis')

Create the user ‘postgres’ on ‘db.seantis.dev’:

dbhost = Api('db.seantis.dev')
dbhost.user(name='postgres')

List the mounts on ‘backup.seantis.dev’:

backuphost = Api('backup.seantis.dev')
backuphost.setup(filter='ansible_mounts')

Connect to a server using a username and a password:

from getpass import getpass

username = 'admin'
password = getpass()

api = Api(
 'web.seantis.dev',
 remote_user=username,
 remote_pass=password
)

print api.command('whoami').stdout() # prints 'admin'

Run a command on multiple servers and get the output for each:

servers = ['a.example.org', 'b.example.org']

api = Api(servers)
result = api.command('whoami')

for server in servers:
 print result.stdout(server)

Which Modules are Available?

All of them! Suitable is a wrapper around all Ansible modules. Here’s a list
of all Ansible modules:

http://docs.ansible.com/ansible/modules_by_category.html

Say you want to use the file module, which is documented here:

http://docs.ansible.com/ansible/file_module.html

Take the first example of the file module:

- file: path=/etc/foo.conf owner=foo group=foo mode=0644

It can be directly translated into the following Suitable call:

api.file(path='etc/foo.conf', owner='foo', mode='0644')

This works for any Ansible module.

More Documentation

More documentation is coming.

For now have a look at Suitable’s Api class to learn more:

Suitable API Documentation.

Source

https://github.com/seantis/suitable

License

Suitable is released under GPLv3 (compatible with Ansible).

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 suitable	

 	
 	
 suitable.api	

Index

 A
 | O
 | S
 | V

A

 	
 	Api (class in suitable.api)

O

 	
 	on_module_error() (suitable.api.Api method)

 	
 	on_unreachable_host() (suitable.api.Api method)

S

 	
 	suitable.api (module)

V

 	
 	valid_return_codes() (suitable.api.Api method)

Suitable API Documentation

	
class suitable.api.Api(servers, ignore_unreachable=False, ignore_errors=False, sudo=False, dry_run=False, verbosity='info', environment=None, **options)

	The api is a proxy to the Ansible API.

It provides all available ansible modules as local functions:

api = Api('personal.server.dev')
api.sync(src='/Users/denis/.zshrc', dest='/home/denis/.zshrc')

Initializes the api.

	Parameters

	
	servers – A list of servers or a string with space-delimited servers. The
api instances will operate on these servers only. Servers which
cannot be reached or whose use triggers an error are taken out
of the list for the lifetime of the object.

e.g: ['server1', 'server2'] or 'server' or
'server1 server2'.

Each server may optionally contain the port in the form of
host:port. If the host part is an ipv6 address you need to
use the following form to specify the port: [host]:port.

	ignore_unreachable – If true, unreachable servers will not trigger an exception. They
are however still taken out of the list for the lifetime of the
object.

	ignore_errors – If true, errors on servers will not trigger an exception. Servers
who trigger an error are still ignored for the lifteime of the
object.

	sudo – If true, the commands run as root using sudo. This is a shortcut
for the following:

Api('server', become=True, become_user='root')

If become or become_user are passed, this option is
ignored!

	sudo_pass – If given, sudo is invoked with the given password. Alternatively
you can use Ansible’s builtin password option (e.g.
passwords={‘become_pass’: ‘***’}).

	remote_pass – Passwords are passed to ansible using the passwords dictionary
by default (e.g. passwords={‘conn_pass’: ‘****’}). Since this is
a bit cumbersome and because earlier Suitable releases supported
remote_pass this convenience argument exists.

If passwords is passed, the remote_pass argument is ignored.

	dry_run – Runs ansible in ‘check’ mode, where no changes are actually
applied to the server(s).

	verbosity – The verbosity level of ansible.
Either ‘critical’, ‘error’, ‘warn’, ‘info’ or ‘debug’.

Defaults to ‘info’.

	environment – The environment variables which should be set during when
a module is executed.

	**options – All remining keyword arguments are passed to the Ansible
TaskQueueManager. The available options are listed here:

http://docs.ansible.com/ansible/developing_api.html

A common option would be to use the commands on the server
as a different user using sudo:

Api('webserver', become=True, become_user='www-data')

You can also add extra variables. Note that those will be global
and not bound to any particular host:

api = Api('webserver', extra_vars={'home': '/home/denis'})
api.file(dest="{{ home }}/.zshrc", state='touch')

	
on_module_error(module, host, result)

	If you want to customize your error handling, this would be
the point to write your own method in a subclass.

Note that this method is not called if ignore_errors is True.

If the return value of this method is ‘keep-trying’, the server
will not be ignored for the lifetime of the object. This enables
you to practically write your own flavor of ‘ignore_errors’.

If an any exception is raised the server WILL be ignored.

	
on_unreachable_host(module, host)

	If you want to customize your error handling, this would be
the point to write your own method in a subclass.

Note that this method is not called if ignore_unreachable is True.

If the return value of this method is ‘keep-trying’, the server
will not be ignored for the lifetime of the object. This enables
you to practically write your own flavor of ‘ignore_unreachable’.

If an any exception is raised the server WILL be ignored.

	
valid_return_codes(*args, **kwds)

	Sets codes which are considered valid when returned from
command modules. The default is (0,).

Should be used as a context:

with api.valid_return_codes(0, 1):
 api.shell('test -e /tmp/log && rm /tmp/log')

 nav.xhtml

 Table of Contents

 		
 Suitable

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

